

January 2017 Program

Case Study - New High Purity Water System Technologies Deliver Reliability & Sustainability for GSK

PRESENTERS

BRIAN LIPKO, PE

Senior Project Manager Hargrove Life Sciences

BRIAN TERMINE, PE

Maintenance Engineering Manager GlaxoSmithKline

STEVE WALTER, CPIP

Process Systems Technology Specialist Hargrove Life Sciences

ACKNOWLEDGMENTS

RANDY MINTO, PE, Program Manager, GlaxoSmithKline

DAN D'AQUILA, PE, Director of Engineering & Validation, GlaxoSmithKline

ED STEVENS, Engineering Manager, GlaxoSmithKline

ALEX TANJUTCO, Validation Project Manager, GlaxoSmithKline

TED DOMBROWSKI, Senior Project Engineer, Arcadis (on behalf of GSK)

ROBERT HOEPPNER, Project Executive, Henderson Constructors, Inc.

MIKE BILLUPS, Project Manager, Henderson Constructors, Inc.

AGENDA

Introduction

Background
Objectives
Challenges

Execution

Design
Construction
Qualification

Results

Benefits
Lessons Learned
Summary

INTRODUCTION

Introduction

Background
Objectives
Challenges

Execution

Design
Construction
Qualification

Results

Benefits
Lessons Learned
Summary

INTRODUCTION: BACKGROUND

CTM
(Clinical Trial Materials)
Facility

Manufactures purified drug substances for clinical trials worldwide

INTRODUCTION: BACKGROUND

Insufficient
Capacity for Future
Expansion or
Production
Increase

Parts no longer Available

Existing HPW & WFI Systems
Obsolete

Increased
Plant downtime Risk
due to insufficient
equipment
reliability

Costly Systems
Not Energy
Efficient

INTRODUCTION: BACKGROUND

Replace 2 Obsolete Water Systems

Project Scope

HPW

High Purity Water

- New ReliableSystem Design
- Supply HPW to Biopharm Development Pilot Plant

WFI

Water for Injection

- Change SystemConfiguration from3 to 2 Pumps
- Replace WFI Control Panel
- Install Redundant VC Stills

PROVIDE RELIABILITY THROUGH REDUNDANCY

DELIVER SUSTAINABILITY

REDUCE WATER & ENERGY USAGE

INCREASE SUPPLY &

STORAGE CAPACITY

REPLACE
OBSOLETE EQUIPMENT

NO IMPACT TO ON-GOING OPERATIONS

RELIABILITY THROUGH REDUNDANCY

HPW

- Multi-Media Filters
- Softeners
- Carbon Filters
- RO/CDI Skid
- Tank Nitrogen Filters
- Distribution Pumps

WFI

- VaporCompression Stills
- Tank Vent Filters
- DistributionPumps

re-dun-dant

serving as a duplicate for preventing failure of an entire system

No Unplanned Downtime

INCREASE SUPPLY & STORAGE CAPACITY

CLINICAL TRIALS

Need to be Adept & Flexible

Accommodate Emerging Technologies in Manufacturing

HPW

Generation and Storage Capacity

Insufficient during Maintenance Activities

WFI

Generation Capacity Bottlenecked

Required Daily Water Usage Planning Activities

OBSOLETE EQUIPMENT

Reverse Osmosis
Pre-Treatment System
(Built c.1987)

FRP High Purity
Water Storage Tank
2000 Gallon (Built c.1987)

OBSOLETE EQUIPMENT

Multi-Effect WFI Still (5 MEF) (Built c. 1987)

(3) WFI Distribution Pumps
One pump on each floor
(Spares in Warehouse)

OBSOLETE EQUIPMENT

Softener
Regeneration
Brine Tank

Softener Regeneration
Salt Pellets
Palletized 40 lb bags
Consumed 400-800 lb/day

NO IMPACT TO ON-GOING OPERATIONS

Building 38

Biopharm GMP
Clinical Trial
Production
Manufacturing

Building 5

Biopharm
Development
Pilot Plant

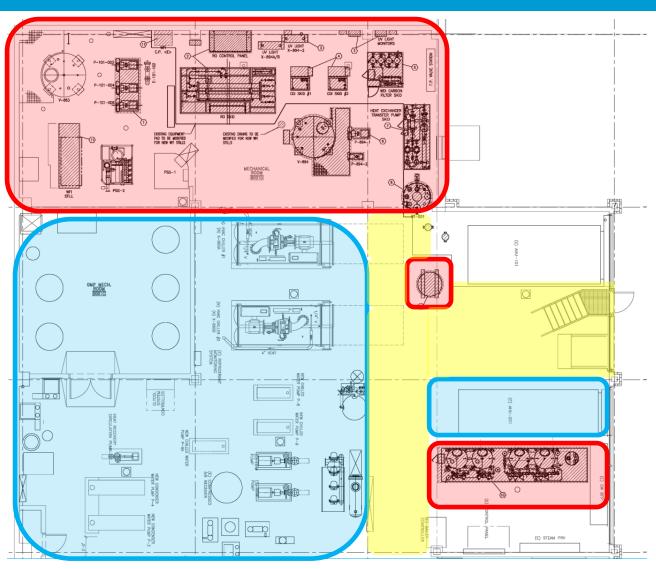
Building 4

Safety
Assessment
Manufacturing

INTRODUCTION: CHALLENGES

INTRODUCTION: CHALLENGES

BUILDING


38

EXISTING MECHANICAL ROOM

> Generation Equipment

> > Utilities

Access

EXECUTION

Introduction

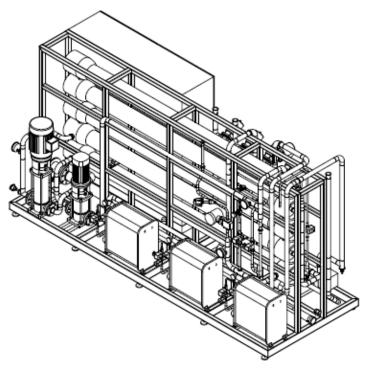
Background
Objectives
Challenges

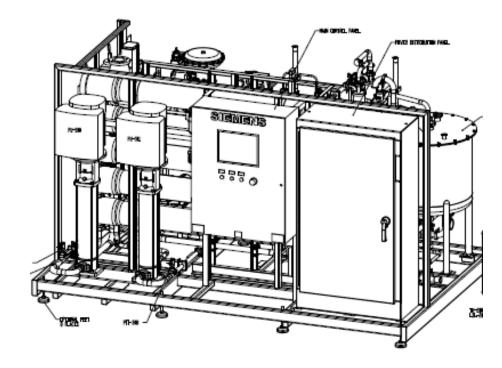
Execution

Design
Construction
Qualification

Results

Benefits
Lessons Learned
Summary





Other Site Tours (Gemba)

Site 1: Christ System Site 2:

Siemens: PreVUE®

EQUIPMENT EVALUATION

	Options	Decision	
HPW	Single Pass vs. Double Pass RO	Single Pass	
	Polisher vs. None	Install Polisher	
	Carbon vs. Bi-sulfite vs. UV Light Filtration	Carbon Filtration	
	Service Type vs. Back Washable Carbon Filters	Back Washable	
	Hot Water vs. Chemical Sanitization	Hot Water Sanitization	
	FRP vs. SS HPW Storage Tank	SS Tank	
	High Recovery RO vs. None	High Recovery RO	
	Nitrogen Blanket on Storage Tank vs. None	Nitrogen Blanket	
	Bulk Brine vs. Day Tank	Both	
	Redundant vs. Single Storage Tank Filters	Redundant Filters	

EQUIPMENT EVALUATION

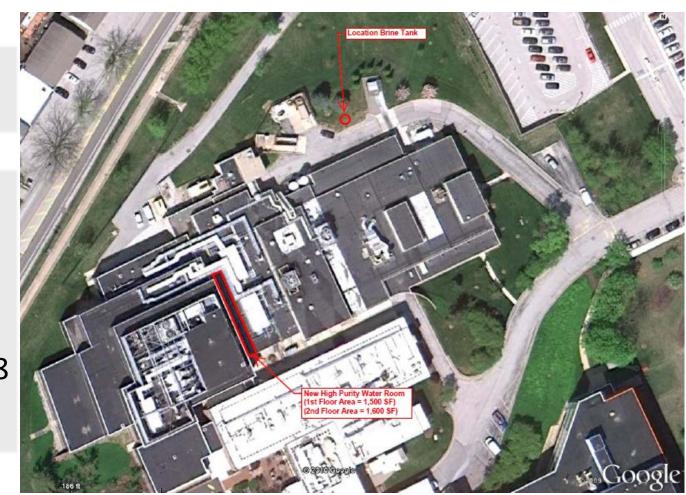
	Options	Decision	
WFI	Vapor Compression vs. Multi Effect	Vapor Compression	
	Separate Pump per Floor vs. Redundant Pumps	Redundant Pumps	
	Redundant vs. Single Storage Tank Filters	Redundant Filters	

Single Pass RO

SUSTAINABILITY EVALUATION

Double Pass RO SPRO/DI followed

	Single Pass RO	with CDI	Double Pass RO	with CDI	by VC stills
Equipment Costs, estimated: Pretreatment Equipment WFI Still	\$800,000 \$535,000	\$1,150,000 \$535,000	\$1,200,000 \$535,000	\$1,400,000 \$535,000	\$804,000 \$1,071,000
Total Equipment Cost	Svs	tems	\$1,735,000	\$1,935,000	\$1,875,000
Operating Costs per day, estimated: • Standard Operation with recirc and hot water sanitization	•	esign	\$601	\$632	
Modified Standard Operation (note 5) • Start/Stop Operation (Siemens S-3) • Christ Aqua Standard Operation with high recovery, idle turndown and hot water sanitization		uations	\$517 \$495	\$544 \$506	
• RO/DI with VC Stills (note 6) • VC Still	\$215	\$210	\$205	\$200	\$1020
Wastewater Volume, gal/day:		4-1-1			_
• Standard Op sanitization	12,624 gals	13,299 gals	Y		
Modified Sta • Start/Stop C • Christ Aqua recovery, turn	12,624 gals 16,198 gals	13,299 gals 16,900 gals 9,975 gals		stewate olume	r
• RO/DI with • vc still Comparisons	3,120 gals	2,200 gals	Re	duction	300 gals
Limitations	distivity / short life of polishing bed / pH adjust necessary to eliminate ammonia		resisti necessary to eliminate ammonia		water quality higher than needed for WDI



PROJECT LOCATIONS & CONSTRAINTS

Project Locations Limited

Only Feasible Solution:

Utilize existing Courtyard between B5 & B38 (14' W x 110' L)

PROJECT LOCATIONS & CONSTRAINTS

Top of Courtyard Looking NORTH

Bottom of Courtyard Looking SOUTH

2-Story Mechanical Room Design

2-Story Mechanical Room Design

NO IMPACT TO ON-GOING OPERATIONS

PHASE 1

PHASE 1A

PHASE 2

Phased
Construction/
Qualification
Approach

Construct
Addition
&
Install
HPW
System

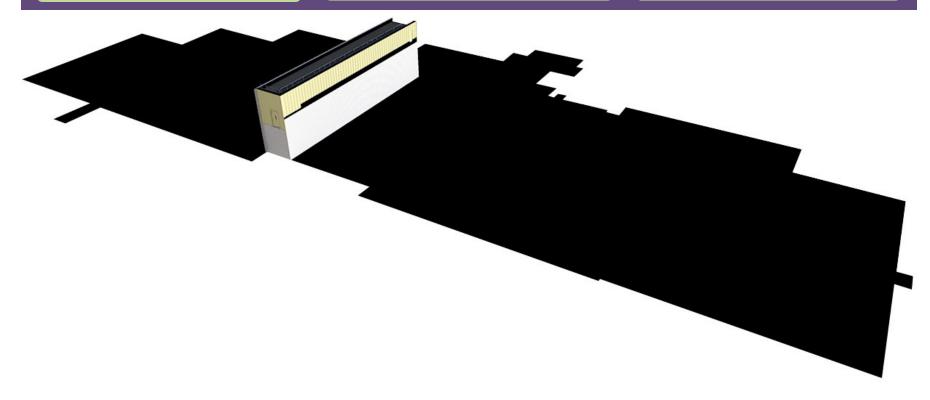
Install WFI
Pumps
&
Control
Panel

Demo Old HPW System

Install WFI VC Stills

Demo Old Still

PHASE 1


PHASE 1

Construct 2-Story Addition for HPW

Between 2 Buildings

Adjacent GMP Operations

Limited Access

SYSTEM CONSIDERATIONS

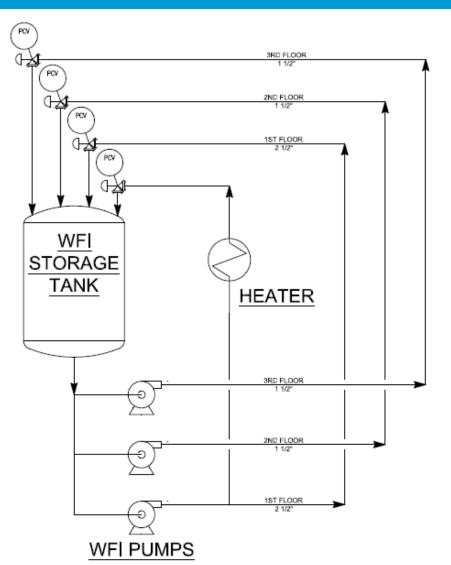
Energy Efficiency

S3 Technology & Pump VFDs

Reduce Water Usage

S3 Technology & High Recovery RO

Bulk Brine Tank System


WFI: Pump Schemes

Fathom Software
Complexity of Flows – Multiple Floors

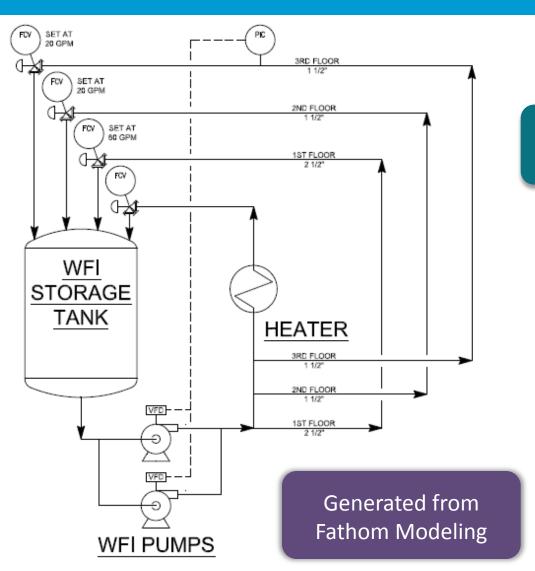
Online TOC,
Conductivity &
Microbial Detection

Choose Vendor that Supplies Customizable PLC Controllers:

- Normalized Differential Pressure to determine cleaning interval
- Softener Regeneration is based on Hardness
- Softener Regeneration Rinse is based on Conductivity

PHASE 1A - WFI

OLD SYSTEM


No Redundancy

Difficult to Control Flow

Maintenance requires Shutdown

Single Pump affected Tank Temp and other Floor Availability

PHASE 1A - WFI

NEW SYSTEM

Redundancy

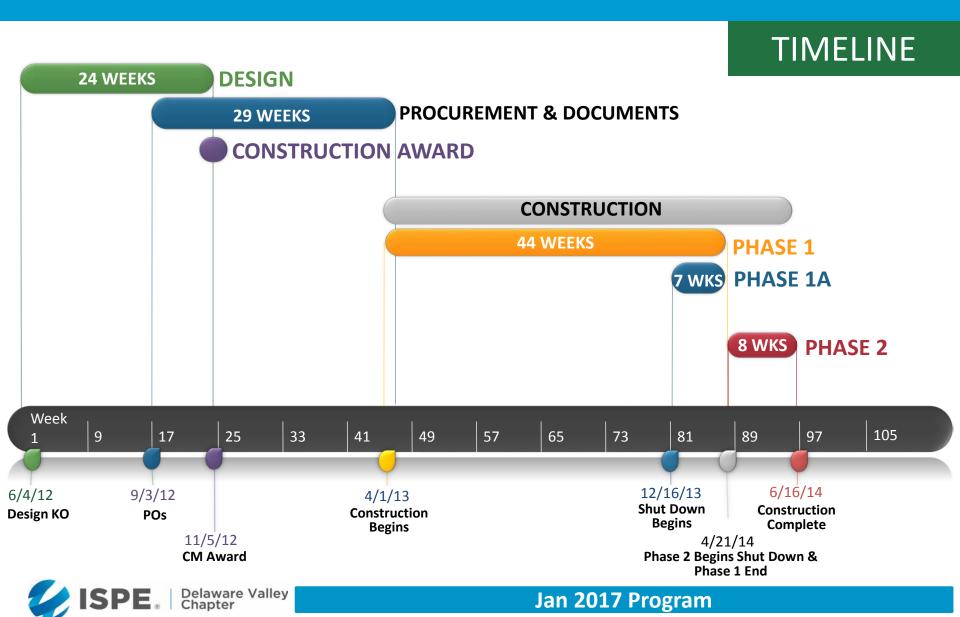
Control From Worst Case

Pump Maintenance = No downtime

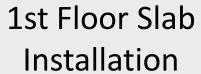
VFD's to manage fluctuations

Individual Loops can be Isolated

WFI CONTROL PANEL



HPW GENERATION SUMMARY


EXECUTION: CONSTRUCTION

Existing Courtyard

PHASE 1

Stone & Soil Excavation

TEMPORARY PROTECTIONS

Maintain Building Integrity during Removal of Building Façade

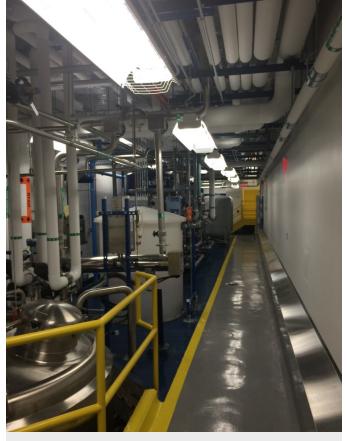
Removal of the façade exposed Utilities above occupied space inside

Installed Temporary Partition Walls in Active Areas & Issued Change Control

Updated Qualified Flow Drawings Continually During Construction

Building Structure Construction

Large Crane due to Limited Access



Installation of HPW Equipment

Outdoor Bulk Brine Tank

2nd Floor HPW

1st Floor Dual RO Skids

1st Floor HPW Tanks & Pumps

2nd Floor Dual Softeners& Multi-Media Filters

2nd Floor Dual Carbon Filters

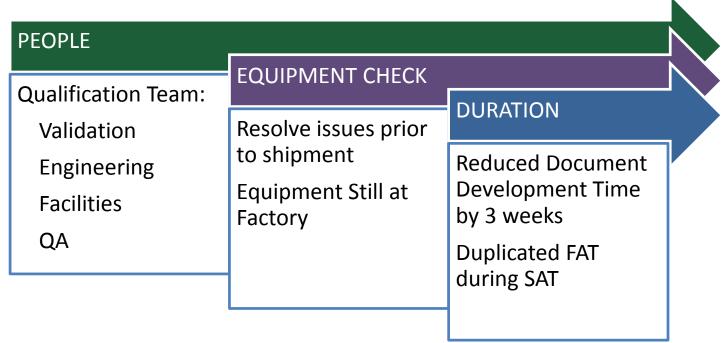

PHASE 1A

B38 Mechanical Room Existing WFI Pumps to Demo

B38 Mechanical Room New WFI Pumps

B38 Mechanical Room HPW System to Demo

Access Doors to B38
Mechanical Room


New WFI Stills at FAT Sugarland, TX

New WFI Stills in B38 Mechanical Room

LEVERAGED QUALIFICATION APPROACH

Vendor Qualification Documents Reformatted to GSK Standards PRIOR to Factory Acceptance Test (FAT)

EXECUTION: CHALLENGES

CONSTRUCTION

Constrained Area within the Middle of Operating Buildings

S3 Design
Not Turn-Key

Polisher Tank Delivery Sartorius Filter Housings Delivery of High Purity Equipment

Installation of High Purity Equipment

DI Tank Filters Failure of PQ1 Testing (Plan B)

EXECUTION: QUALIFICATION

VALIDATION DOCUMENTATION

느	
	F
Σ	Z
	M
OCU	\GE
ISIVE D	\triangleleft
\geq	Z
SN	M
E	
X	

	1	Validation Master Plan (HPW/WFI) including 3 Validation Interim Reports
	5	User Requirement Specs
]	14	Change Controls
	27	Installation Operation Qualification Documents
	10	Standard Operating Procedure Updates
	22	Functional Design Specifications
	3	Factory Acceptance Test / Site Acceptance Test
	2	Design Qualifications

RESULTS

Introduction

Background
Objectives
Challenges

Execution

Design
Construction
Qualification

Results

Benefits
Lessons Learned
Summary

INCREASED SUPPLY & CAPACITY

IMPROVED
RELIABILITY
&
DELIVERED
SUSTAINABILITY

LOWER
OPERATING
EXPENSE

IMPROVED SUPPLY TO CLINICAL OPERATIONS

Redundant HPW & WFI

B38 B5 B4

Increased Capacity & Reliability

Water Consumption

- Reduced ~11,000 gallons per day / ~4,050,000 gallons per year
- Cost savings of ~\$32K per year (Water & Sewer)
- Supports GSK's strategic goal to reduce Water Consumption

Electrical Energy

- Pumping operations reduced by 88%
- Cost Savings of ~\$28k per year

Carbon Emissions

- Annual carbon emissions reduction of 348 TONNES CO2
- Supports GSK's strategic goal to reduce Carbon Footprint

Operations

- New System supplying HPW to Biopharm Development Pilot Plant
- Eliminated Resin Bed Train Service
- New Bulk Brine & Online Microbial Detection Systems
- Cost Savings of ~\$170,000 per year

Online Microbial Detection System

Particulate Size

Synchronized Optical Monitoring

Microbial Fluorescence

FUTURE OPERATING SAVINGS

Reduces Regulatory Sampling

Doesn't Eliminate

Bioburden/Endotoxin

20% (96)

Samples/
Year

Only 4th System Installed in US

RESULTS: LESSONS LEARNED

COULD HAVE DONE BETTER

Procurement Management

WFI Batcher Orifices

WFI Still & Clean
Steam Supply Pressure

PQ1 Failure / 'Plan B'

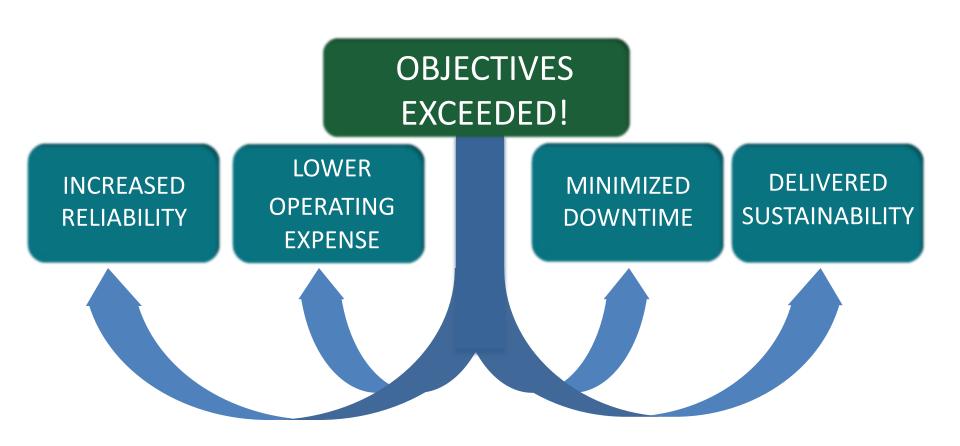
WHAT WENT WELL

Full Control
Replacement:
Demo Simulation
of functionality

Integration of Automation Contractor

Selection of Construction Contractor

RESULTS: SUMMARY


SUCCESS!

CONSTRUCTED
& VALIDATED
IN LESS THAN
1 YEAR

TWO
VALIDATED
SYSTEMS
& NEW
GENERATION
EQUIPMENT

MINIMAL IMPACT TO ON-GOING OPERATIONS

RESULTS: SUMMARY

RESULTS: SUMMARY

OBJECTIVES EXCEEDED!

We kept the Trains on the Tracks

QUESTIONS

